base-orphans-0.9.2: Backwards-compatible orphan instances for base
Safe HaskellTrustworthy
LanguageHaskell2010

Data.Orphans

Description

Exports orphan instances that mimic instances available in later versions of base. To use them, simply import Data.Orphans ().

Orphan instances

Eq (SChar c) Source # 
Instance details

Methods

(==) :: SChar c -> SChar c -> Bool

(/=) :: SChar c -> SChar c -> Bool

Eq (SSymbol s) Source # 
Instance details

Methods

(==) :: SSymbol s -> SSymbol s -> Bool

(/=) :: SSymbol s -> SSymbol s -> Bool

Eq (SNat n) Source # 
Instance details

Methods

(==) :: SNat n -> SNat n -> Bool

(/=) :: SNat n -> SNat n -> Bool

Ord (SChar c) Source # 
Instance details

Methods

compare :: SChar c -> SChar c -> Ordering

(<) :: SChar c -> SChar c -> Bool

(<=) :: SChar c -> SChar c -> Bool

(>) :: SChar c -> SChar c -> Bool

(>=) :: SChar c -> SChar c -> Bool

max :: SChar c -> SChar c -> SChar c

min :: SChar c -> SChar c -> SChar c

Ord (SSymbol s) Source # 
Instance details

Methods

compare :: SSymbol s -> SSymbol s -> Ordering

(<) :: SSymbol s -> SSymbol s -> Bool

(<=) :: SSymbol s -> SSymbol s -> Bool

(>) :: SSymbol s -> SSymbol s -> Bool

(>=) :: SSymbol s -> SSymbol s -> Bool

max :: SSymbol s -> SSymbol s -> SSymbol s

min :: SSymbol s -> SSymbol s -> SSymbol s

Ord (SNat n) Source # 
Instance details

Methods

compare :: SNat n -> SNat n -> Ordering

(<) :: SNat n -> SNat n -> Bool

(<=) :: SNat n -> SNat n -> Bool

(>) :: SNat n -> SNat n -> Bool

(>=) :: SNat n -> SNat n -> Bool

max :: SNat n -> SNat n -> SNat n

min :: SNat n -> SNat n -> SNat n

Bounded (f (g a)) => Bounded (Compose f g a) Source # 
Instance details

Methods

minBound :: Compose f g a

maxBound :: Compose f g a

Enum (f (g a)) => Enum (Compose f g a) Source # 
Instance details

Methods

succ :: Compose f g a -> Compose f g a

pred :: Compose f g a -> Compose f g a

toEnum :: Int -> Compose f g a

fromEnum :: Compose f g a -> Int

enumFrom :: Compose f g a -> [Compose f g a]

enumFromThen :: Compose f g a -> Compose f g a -> [Compose f g a]

enumFromTo :: Compose f g a -> Compose f g a -> [Compose f g a]

enumFromThenTo :: Compose f g a -> Compose f g a -> Compose f g a -> [Compose f g a]

Floating (f (g a)) => Floating (Compose f g a) Source # 
Instance details

Methods

pi :: Compose f g a

exp :: Compose f g a -> Compose f g a

log :: Compose f g a -> Compose f g a

sqrt :: Compose f g a -> Compose f g a

(**) :: Compose f g a -> Compose f g a -> Compose f g a

logBase :: Compose f g a -> Compose f g a -> Compose f g a

sin :: Compose f g a -> Compose f g a

cos :: Compose f g a -> Compose f g a

tan :: Compose f g a -> Compose f g a

asin :: Compose f g a -> Compose f g a

acos :: Compose f g a -> Compose f g a

atan :: Compose f g a -> Compose f g a

sinh :: Compose f g a -> Compose f g a

cosh :: Compose f g a -> Compose f g a

tanh :: Compose f g a -> Compose f g a

asinh :: Compose f g a -> Compose f g a

acosh :: Compose f g a -> Compose f g a

atanh :: Compose f g a -> Compose f g a

log1p :: Compose f g a -> Compose f g a

expm1 :: Compose f g a -> Compose f g a

log1pexp :: Compose f g a -> Compose f g a

log1mexp :: Compose f g a -> Compose f g a

RealFloat (f (g a)) => RealFloat (Compose f g a) Source # 
Instance details

Methods

floatRadix :: Compose f g a -> Integer

floatDigits :: Compose f g a -> Int

floatRange :: Compose f g a -> (Int, Int)

decodeFloat :: Compose f g a -> (Integer, Int)

encodeFloat :: Integer -> Int -> Compose f g a

exponent :: Compose f g a -> Int

significand :: Compose f g a -> Compose f g a

scaleFloat :: Int -> Compose f g a -> Compose f g a

isNaN :: Compose f g a -> Bool

isInfinite :: Compose f g a -> Bool

isDenormalized :: Compose f g a -> Bool

isNegativeZero :: Compose f g a -> Bool

isIEEE :: Compose f g a -> Bool

atan2 :: Compose f g a -> Compose f g a -> Compose f g a

Num (f (g a)) => Num (Compose f g a) Source # 
Instance details

Methods

(+) :: Compose f g a -> Compose f g a -> Compose f g a

(-) :: Compose f g a -> Compose f g a -> Compose f g a

(*) :: Compose f g a -> Compose f g a -> Compose f g a

negate :: Compose f g a -> Compose f g a

abs :: Compose f g a -> Compose f g a

signum :: Compose f g a -> Compose f g a

fromInteger :: Integer -> Compose f g a

Fractional (f (g a)) => Fractional (Compose f g a) Source # 
Instance details

Methods

(/) :: Compose f g a -> Compose f g a -> Compose f g a

recip :: Compose f g a -> Compose f g a

fromRational :: Rational -> Compose f g a

Integral (f (g a)) => Integral (Compose f g a) Source # 
Instance details

Methods

quot :: Compose f g a -> Compose f g a -> Compose f g a

rem :: Compose f g a -> Compose f g a -> Compose f g a

div :: Compose f g a -> Compose f g a -> Compose f g a

mod :: Compose f g a -> Compose f g a -> Compose f g a

quotRem :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a)

divMod :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a)

toInteger :: Compose f g a -> Integer

Real (f (g a)) => Real (Compose f g a) Source # 
Instance details

Methods

toRational :: Compose f g a -> Rational

RealFrac (f (g a)) => RealFrac (Compose f g a) Source # 
Instance details

Methods

properFraction :: Integral b => Compose f g a -> (b, Compose f g a)

truncate :: Integral b => Compose f g a -> b

round :: Integral b => Compose f g a -> b

ceiling :: Integral b => Compose f g a -> b

floor :: Integral b => Compose f g a -> b